Preictal activity of subicular, CA1, and dentate gyrus principal neurons in the dorsal hippocampus before spontaneous seizures in a rat model of temporal lobe epilepsy.
نویسندگان
چکیده
Previous studies suggest that spontaneous seizures in patients with temporal lobe epilepsy might be preceded by increased action potential firing of hippocampal neurons. Preictal activity is potentially important because it might provide new opportunities for predicting when a seizure is about to occur and insight into how spontaneous seizures are generated. We evaluated local field potentials and unit activity of single, putative excitatory neurons in the subiculum, CA1, CA3, and dentate gyrus of the dorsal hippocampus in epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Average action potential firing rates of neurons in the subiculum, CA1, and dentate gyrus, but not CA3, increased significantly and progressively beginning 2-4 min before locally recorded spontaneous seizures. In the subiculum, CA1, and dentate gyrus, but not CA3, 41-57% of neurons displayed increased preictal activity with significant consistency across multiple seizures. Much of the increased preictal firing of neurons in the subiculum and CA1 correlated with preictal theta activity, whereas preictal firing of neurons in the dentate gyrus was independent of theta. In addition, some CA1 and dentate gyrus neurons displayed reduced firing rates preictally. These results reveal that different hippocampal subregions exhibit differences in the extent and potential underlying mechanisms of preictal activity. The finding of robust and significantly consistent preictal activity of subicular, CA1, and dentate neurons in the dorsal hippocampus, despite the likelihood that many seizures initiated in other brain regions, suggests the existence of a broader neuronal network whose activity changes minutes before spontaneous seizures initiate.
منابع مشابه
اثر استیل آل کارنیتین در جلوگیری از تحلیل نورونهای هیپوکمپ و جوانه زدن فیبرهای خزهای در مدل تجربی صرع گیجگاهی در موش صحرایی
Background & Aims : Temporal lobe epilepsy is due to structural and metabolic changes in hippocampus including marked degeneration of neurons. Considering some evidences on antiepileptic and neuroprotective activity of acetyl L carnitine (ALC), this study was undertaken to evaluate the preventive effect of ALC on structural changes in hippocampus in an experimental model of temporal lobe ep...
متن کاملUnit Activity of Hippocampal Interneurons before Spontaneous Seizures in an Animal Model of Temporal Lobe Epilepsy.
Mechanisms of seizure initiation are unclear. To evaluate the possible roles of inhibitory neurons, unit recordings were obtained in the dentate gyrus, CA3, CA1, and subiculum of epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Most interneurons in the dentate gyrus, CA1, and subiculum increased their firing rate before seizures, and did so with significant consisten...
متن کاملThe effect of silymarin on prevention of hippocampus neuronal damage in rats with temporal lob epilepsy
Background and Objective: Temporal lobe epilepsy is hallmarked with neuronal degeneration in some areas of hippocampus and mossy fiber sprouting in dentate area. Considering some evidences on neuroprotective and antioxidant activity of silymarin (SM), this study was undertaken to evaluate the preventive effect of this agent on structural changes in hippocampus of kainate-epileptic rats. Materia...
متن کاملThe effect of agonist and antagonist of Nociceptine/Orphanin FQ receptor on seizure and cognitive dysfunction in experimental model of temporal lobe epilepsy in male rat
Background: Temporal lobe epilepsy is a chronic neurological disorder characterized by spontaneous seizures, learning and memory deficiency, loss of neurons, mossy fiber sprouting and tissue apoptosis. This study was to investigate the effect of NOP receptor agonist (MCOPPB) and antagonist (SB612111) on seizure and cognitive dysfunction and histological studies in experimental model of temporal...
متن کاملThe Effect of Alpha-Lipoic Acid on Learning and Memory Deficit in a Rat Model of Temporal Lobe Epilepsy
Introduction: Epilepsy is a chronic neurological disorder in which patients experience spontaneous recurrent seizures and deficiency in learning and memory. Although the most commonly recommended therapy is drug treatment, some patients do not achieve adequate control of their seizures on existing drugs. New medications with novel mechanisms of action are needed to help those patients whose sei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 50 شماره
صفحات -
تاریخ انتشار 2014